Difference between revisions of "Features"

From Balthazar
Line 10: Line 10:
 
Keyboard is '''QUERTY''' with 7 '''LED'''s illuminated and clickable 8 mm trackball positioned between G and H keys and above B key.<br>
 
Keyboard is '''QUERTY''' with 7 '''LED'''s illuminated and clickable 8 mm trackball positioned between G and H keys and above B key.<br>
  
So when we say the "design is different", it actually is inspired by and extracted from '''[https://www.lenovo.com/gb/en/think/ IBM/Lenovo ThinkPad]''' series, '''[https://na.panasonic.com/us/computers-tablets-handhelds/computers/ Panasonic ToughBook]''',a '''[https://en.wikipedia.org/wiki/One_Laptop_per_Child OLPC]''' and main security USB dongle features by [https://www.nitrokey.com/ Nitrokey] concept.   
+
So when we say the "design is different", it actually is inspired by and extracted from '''[https://www.lenovo.com/gb/en/think/ IBM/Lenovo ThinkPad]''' series, '''[https://na.panasonic.com/us/computers-tablets-handhelds/computers/ Panasonic ToughBook]''',a '''[https://en.wikipedia.org/wiki/One_Laptop_per_Child OLPC]''' and main secure USB-dongle features based on  '''[https://www.nitrokey.com/ Nitrokey]''' concept.   
  
 
Balthazar's design aims for a totally new usability experience.<br>
 
Balthazar's design aims for a totally new usability experience.<br>
Line 23: Line 23:
  
 
'''GPU''' - '''ARM''''s '''MALI-4xx''' architecture would do great, but we also look into drivers' compatibility and openness, too.<br>
 
'''GPU''' - '''ARM''''s '''MALI-4xx''' architecture would do great, but we also look into drivers' compatibility and openness, too.<br>
While '''NVIDIA''' would be technically possibly the best performance choice, issues arise with general attitude towards FOSS compatibilty.<br>
+
While '''NVIDIA''' would be technically possibly the best performance choice, issues arise with general attitude towards '''FOSS''' compatibilty.<br>
 
In any case we look and listen into '''NVIDIA''' and '''CUDA''' options, accelerating totally open documentation from '''NVIDIA''''s side.<br>
 
In any case we look and listen into '''NVIDIA''' and '''CUDA''' options, accelerating totally open documentation from '''NVIDIA''''s side.<br>
Also the '''NVIDIA's Jetson''' platform is researched for a compatibility with '''RISC-V''' architecture, '''ISA''' and '''FOSS''' .<br>
+
Also the '''NVIDIA's Jetson''' IoT and AI platform is researched for a compatibility with '''RISC-V''' architecture, '''ISA''' and '''FOSS''' .<br>
  
 
'''Storage''' - a '''SATA''' SSD is on board and it should be taken out very fast from a bay.<br>
 
'''Storage''' - a '''SATA''' SSD is on board and it should be taken out very fast from a bay.<br>

Revision as of 06:22, 5 October 2019

Basic specifications and features


Balthazar is made to run on NixOS, Trisquel GNU, Debian and Ubuntu variants of 64 bit low-latency kernel for RISC-V.

In a form-factor there are some improvements and novelties in approach to a physical user interface and experience. Main characteristics of Balthazar are 4 robust hardware switches for WiFi, camera, microphones and speakers, SoM CPU/GPU swappable card, a removable camera module with 2 microphones array, a keyboard layout with a segmented touch-pad positioned above the keyboard with pull-out speakers. Motherboard(s) components are behind the screen and below keyboard are batteries - one small non removable and one really big that is hot-swappable - SSD bay is also below keyboard, as well as other peripheral connectors - GPIO, USB OTG-secure, HDMI, headphones and mic inputs, volume knob and finally eSATA.

Keyboard is QUERTY with 7 LEDs illuminated and clickable 8 mm trackball positioned between G and H keys and above B key.

So when we say the "design is different", it actually is inspired by and extracted from IBM/Lenovo ThinkPad series, Panasonic ToughBook,a OLPC and main secure USB-dongle features based on Nitrokey concept.

Balthazar's design aims for a totally new usability experience.

"10 or so years ago there were no mobile phones, but we all learned how to use them." (Arjen Kamphuis in xTED speech in Delft)

CPU and RAM - as the development goes on BPCD is based on RISC-V and ISA architecture multi-core SoM or a System on a Module "card" that is exchangeable and upgradeble.

RISC-V architecture is understood as an ideal vehicle for the security community.
We also keep an eye on ARM Cortex - A7x iterations along the path, waiting for their development to align with our expectations which are open documentation that will enable Open Source community to write drivers and other software.
With a maximum reasonable amount of RAM, we use the most rational clock speeds to achieve the best possible computing performance versus battery's power consumption. There should be no compromise there. In any case, count on 8+ Gb RAM and some serious processing power.

GPU - ARM's MALI-4xx architecture would do great, but we also look into drivers' compatibility and openness, too.
While NVIDIA would be technically possibly the best performance choice, issues arise with general attitude towards FOSS compatibilty.
In any case we look and listen into NVIDIA and CUDA options, accelerating totally open documentation from NVIDIA's side.
Also the NVIDIA's Jetson IoT and AI platform is researched for a compatibility with RISC-V architecture, ISA and FOSS .

Storage - a SATA SSD is on board and it should be taken out very fast from a bay.
eSATA connector might help in expanding the storage possibilities.

Fanless - less movable parts means more battery time for the processing power and a passive cooling adds to the longevity of the components. Think quiet.

Boot and sleep - Secure-boot as well as a fast boot time. Nobody has and especially children do not have the patience to wait.
Ever since C64/AMIGA times computers should be able to be switched on and off fast, so using some Libreboot/Coreboot and a Clear Linux (minus Intel optimisation) concepts applied in a BPCD firmware/BIOS should do it.

BPCD suspends to RAM and goes to hibernate when battery is at 20%. Properly.

Upgradeable - RAM and a processor-board featuring SoM attachment port.

A non-glare screen - size is 13.3” 16:10 full HD resolution (200 dpi +) that provides far less strain on user's eyes.

A non-reflective - a button driven backlight “off” monochrome mode for very low-power use in sunlight - prolongs a battery life a lot.

LED backlit - colour mode with an alternance of red, green and blue pixels.

A detachable webcam - also with a slide lens cover and a hardware switch for on/off

A volume wheel - a ceramic volume potentiometer with a “click” for the on/off functionality.

GPIO - a retractable and flexible robust flat-ribbon cable connecting General Purpose Input Output 19 pins array for connecting to all the things you want to connect it to.

Quick charging battery - Long Life Cycle Polymer 10000+ mAh that is also recyclable.

Hot-swap - a second small battery enabling main battery hot-swap.

Modular power - on-board power supply that follows full ACPI specification defaults to scalable/modular voltage for the processor and memory by the design aims at preventing the so-called side-channel attacks. ISA already specifies that no data is kept in the cache, but remote possibility of such attack still exists.

Waterproof keyboard - with an illuminated track-point ball, firmware includes default onboard SSH compression (ssh -C) enabled communication between keyboard's motherboard and the rest of I/O hardware - prevents key-logging and keystroke timing and guessing algorithms.

Multitouch pad - a smooth surface, flat-flush and positioned above the keyboard. It has a “Wacom”-style mode for the extended stylus or a finger draw.
It is multi-touch and gestures capable.

Casing - a tough, rugged form-factor done in a multi-colour recyclable plastic with added LEGO® studs here and there.


Hardware security and privacy features:


Four (4) hardware off/on switches - webcam (detachable), speakers, the microphones array (detachable) and obligatory Wi-Fi.

Detachable USB gender-changer dongle - that should prevent anyone to plug in USB-anything unless it is attached and a password unlocked, also when it is taken out prevents anyone to stick USB-anything in. Basically - no physical USB on board.


A few interesting extras:


TEMPEST-shield internal cabling - shields from any external and internal electromagnetic radiation. Weaved and braided cable shielding above MIL-SPEC/DTL and GOST/IST standards.

A stylus - for a pad drawing, also provides enhanced entropy while generating PGP keys, easy graphic editing, poking someone etc.


Additional adapter with an onboard:


LEGO® Power Functions - for powering and the control of actuators. .

RJ-12 LEGO® - “a shifted notch” connector for LEGO® MINDSTORMS® series of actuators and sensors,

a male D-Sub serial port (tty) and a VGA connector.


Charms:


LEGO® keychain - for the USB dongle.


Want to know more? Pretty pictures ahead.  

Nlnet banner.png NGI0 tag.png NGI0Entrust tag.png